Course Code	Course Name	Credits
CSC302	Discrete Structures and Graph Theory	3

Pre-r	Pre-requisite: Basic Mathematics		
Cour	Course Objectives: The course aims:		
1	Cultivate clear thinking and creative problem solving.		
2	Thoroughly train in the construction and understanding of mathematical proofs. Exercise		
	common mathematical arguments and proof strategies.		
3	To apply graph theory in solving practical problems.		
4	Thoroughly prepare for the mathematical aspects of other Computer Engineering courses		
Cour	se Outcomes: On successful completion, of course, learner/student will be able to:		
1	Understand the notion of mathematical thinking, mathematical proofs and to apply them		
	in problem solving.		
2	Ability to reason logically.		
3	Ability to understand relations, functions, Diagraph and Lattice.		
4	Ability to understand and apply concepts of graph theory in solving real world problems.		
5	Understand use of groups and codes in Encoding-Decoding		
6	Analyze a complex computing problem and apply principles of discrete mathematics to		
	identify solutions		

Module	Detai	led Contents	Hours
1	Logi	c	6
	1.1	Propositional Logic, Predicate Logic, Laws of Logic, Quantifiers, Normal Forms, Inference Theory of Predicate Calculus, Mathematical Induction.	
2	Relat	tions and Functions	6
	2.1	Basic concepts of Set Theory	
	2.2	Relations: Definition, Types of Relations, Representation of Relations, Closures of Relations, Warshall's algorithm, Equivalence relations and Equivalence Classes	
	2.3	Functions : Definition, Types of functions, Composition of functions, Identity and Inverse function	
3	Pose	ts and Lattice	5
	3.1	Partial Order Relations, Poset, Hasse Diagram, Chain and Anti chains, Lattice, Types of Lattice, Sub lattice	
4	Cour		6
	4.1	Basic Counting Principle-Sum Rule, Product Rule, Inclusion- Exclusion Principle, Pigeonhole Principle	
5		Recurrence relations, Solving recurrence relations braic Structures	8
	5.1 5.2	Algebraic structuresMonoid, Groups, Subgroups, Abelian Group, Cyclic group, IsomorphismAlgebraic structures with two binary operations: Ring	
	5.3	Coding Theory : Coding, binary information and error detection,	
		decoding and error correction	
6	Grap	oh Theory	8
		Types of graphs, Graph Representation, Sub graphs, Operations on Graphs, Walk, Path, Circuit, Connected Graphs, Disconnected Graph, Components, Homomorphism and Isomorphism of Graphs, Euler and Hamiltonian Graphs, Planar Graph, Cut Set, Cut Vertex,	

		Applications.	
--	--	---------------	--

-		
Te	Textbooks:	
1	Bernad Kolman, Robert Busby, Sharon Cutler Ross, Nadeem-ur-Rehman, "Discrete	
	Mathematical Structures", Pearson Education.	
2	C. L. Liu "Elements of Discrete Mathematics", second edition 1985, McGraw-Hill Book	
	Company. Reprinted 2000.	
3	K. H. Rosen, "Discrete Mathematics and applications", fifth edition 2003, Tata McGraw Hill	
	Publishing Company	
Re	References:	
1	Y N Singh, "Discrete Mathematical Structures", Wiley-India.	
2	J. L. Mott, A. Kandel, T. P. Baker, "Discrete Mathematics for Computer Scientists and	
	Mathematicians", Second Edition 1986, Prentice Hall of India.	
3	J. P. Trembley, R. Manohar "Discrete Mathematical Structures with Applications to	
	Computer Science", Tata McGraw Hill Publishing Company	
4	Seymour Lipschutz, Marc Lars Lipson, "Discrete Mathematics" Schaum"s Outline, McGraw	
	Hill Education.	
5	Narsing Deo, "Graph Theory with applications to engineering and computer science", PHI	
	Publications.	
6	P. K. Bisht, H. S. Dhami, "Discrete Mathematics", Oxford press.	

Assessment:

Internal Assessment Test:

The assessment consists of two class tests of 20 marks each. The 1^{st} class test (Internal Assessment I) has to be conducted when approximately 40% of the syllabus is completed. The 2^{nd} class test has to be conducted (Internal Assessment II) when an additional 40% syllabus is completed. The duration of each test will be for one hour.

End Semester Theory Examination:

1	The question paper will comprise a total of 6 questions, each carrying 20 marks.	
2	Out of the 6 questions, 4 questions have to be attempted.	
3	Question 1, based on the entire syllabus, will have 4sub-questions of 5 marks each and is	
	compulsory.	
4	Question 2 to Question 6 will have 3 sub-questions, each of 6, 6, and 8 marks, respectively.	
5	Each sub-question in (4) will be from different modules of the syllabus.	
6	Weightage of each module will be proportional to the number of lecture hours, as	
	mentioned in the syllabus.	

Use	Useful Links	
1	https://www.edx.org/learn/discrete-mathematics	
2	https://www.coursera.org/specializations/discrete-mathematics	
3	https://nptel.ac.in/courses/106/106/106094/	
4	https://swayam.gov.in/nd1 noc19 cs67/preview	