

Mobile
Programming

Practical
(Course Code : USIT3P5)

[Core Core Subject Practical]

S. Y. B.Sc. (Information Technology)

Semester III - Mumbai University

Choice Based Credit and Semester System with
effect from the Academic Year 2023 – 2024

Prof. Krutika H. Churi
M.Sc. IT

PG Professor,
Assistant Professor

Sonopant Dandekar Arts, V. S. Apte Commerce,
and M. H. Mehata Science College,

Palghar, Mumbai

Mobile Programming Practical
(Course Code : USIT3P5)

[Core Core Subject Practical] (Code : USIT303)

S.Y. B.Sc. (Information Technology)
Semester III (Mumbai University)

- For New Syll. 2023-2024)

 Author : Prof. Krutika H. Churi
 First Edition as per New Syllabus :

August 2023
 Tech-Neo ID : BI-06
 ISBN : 978-93-5583-436-2

Copyright © by Prof. Krutika H. Churi

All rights reserved.

No part of this publication may be reproduced,
copied, or stored in a retrieval system, distributed
or transmitted in any form or by any means,
including photocopy, recording, or other electronic
or mechanical methods, without the prior written
permission of the Publisher.

This book is sold subject to the condition that it
shall not, by the way of trade or otherwise, be lent,
resold, hired out, or otherwise circulated without
the publisher’s prior written consent in any form of
binding or cover other than which it is published
and without a similar condition including this
condition being imposed on the subsequent
purchaser and without limiting the rights under
copyright reserved above.

Published by

 Mr. Sachin S. Shah
 Managing Director, B. E (Industrial Electronics)
 An Alumunus of IIM Ahmedabad

 Mrs. Nayana S. Shah, & Mr. Rahul S. Shah

Permanent Address

Tech-Neo Publications LLP
Dugane Ind. Area, Survey No. 28/25, Dhayari,
Near Pari Company, Pune. Maharashtra, India.

Email : info@techneobooks.in
Website : www.techneobooks.in

Printed at : Image Offset (Mr. Rahul Shah)

Dugane Ind. Area, Survey No. 28/25, Dhayari,
Near Pari Company, Pune - 411041. Maharashtra
State, India.

E-mail : rahulshahimage@gmail.com

About Managing Director…
- Mr. Sachin Shah
 Over 25 years of experience in

Academic Publishing…

With over two and a half decades of
experience in bringing out more than
1200 titles in Engineering, Polytechnic,
Pharmacy, Computer Sciences and
Information Technology.

 A driven Educationalist…

1. B.E. (Industrial Electronics) (1992
Batch) from Bharati Vidyapeeth’s
College of Engineering, affiliated to
University of Pune.

2. An Alumnus of IIM Ahmedabad.

3. A Co-Author of bestselling book on
“Basic Electrical Engineering” Basic
Electronics Engineering” for Degree
Course in Engineering

4. For over a decade, been working as a
Consultant for Higher Education in
USA and several other countries.

 With path-breaking career…

 A publishing career that started with
handwritten cyclostyled notes back in
1992.

 Has to his credit, setting up and
expansion of one of the leading
companies in higher education
publishing.

 An experienced professional and
an expert…

 An energetic, creative & resourceful
professional with extensive experience
of closely working with the best & the
most eminent authors of Publishing
Industry, ensures high standards of
quality in contents.

 Helping students to attain better
understanding and in-depth
knowledge of the subject.

 Simplifying the methods of learning
and bridging the gap between the best
authors in the publishing industry and
the student community for decades.

CAUTION : PHOTOCOPYING OF
COPYRIGHTED BOOK IS ILLEGAL

SAVE YOURSELF,
DON’T BUY PHOTOCOPIED BOOKS

Books Published are protected under Copyright Act 1999 and sold
subject to the condition that the book and any extract thereof shall be not
photocopied and includes the said condition being imposed on any subsequent
purchaser.

Any person found selling, stocking or carrying photocopied book may
be arrested for indulging in criminal offence of copyright piracy and may be
imprisoned for 3 years and also fined a sum of Rs. 2,00,000/- for first offence.

Sharing of PDF’s, any Drives, Links, Storing in Hard Disks, Pendrive
and Circulating on Social Media like Instagram, Telegram, Facebook, Snapchat,
Google Drive & Whatsapp etc also violates the Copyright Laws and will be
reported to Cyber Crime Division.

Publisher has raided many such offenders. Their Machines were Seized.
Criminal case has also been registered against them. Civil Suits are also filed for
recovering damages. Police investigations of Students who are indulged in this
is also in process.

Recently, the Supreme Court of India, in M/s Knit Pro International v.
The State of NCT of Delhi on 20 May 2022, has observed and held that offences
under Section 63 of the Copyright Act, 1957 (“Copyright Act”) are cognizable
and non–bailable.

“Name of informer will be kept highly confidential. On successful raid he will be
suitably rewarded”

Call / WhatsApp us on +91 98504 29188
Email : info@techneobooks.in

Tech-Neo Publications LLP
Sr. No. 38/1, Behind Pari Company, Khedekar Industrial Estate, Narhe,

Maharashtra, Pune - 411041.

Email : info@techneobooks.in Website : www.techneobooks.in

Preface

Dear Students,

I am extremely happy to present the book of

“Mobile Programming Practical” for you. I have divided the

subject into small chapters so that the topics can be arranged

and understood properly. The topics within the chapters have

been arranged in a proper sequence to ensure smooth flow of

the subject.

I am thankful to Shri. Sachin Shah for the encouragement

and support that they have extended to me. I am also thankful

to the staff members of Tech-Neo Publications and others for

their efforts to make this book as good as it is. We have jointly

made every possible efforts to eliminate all the errors in this

book. However if you find any, please let me know, because

that will help me to improve further.

I am also thankful to my family members and friends for

their patience and encouragement.

- Prof. Krutika H. Churi

Syllabus…

Mobile Programming Practical

B. Sc. (Information Technology) Semester – III

Course Name:
Mobile Programming Practical

Course Code:
USIT3P5

Periods per week (1 Period is 50 minutes) 3

Credits 2

 Hours Marks

Evaluation System Practical
Examination

2½ 50

Internal -- --

The practical’s will be based on HTML5, CSS, Flutter. (Android will be

introduced later after they learn Java)

List of Practical

 Setting up Flutter, PhoneGAP Project and environment.

1. Program to demonstrate the features of Dart language.

2. Designing the mobile app to implement different widgets.

3. Designing the mobile app to implement different Layouts.

4. Designing the mobile app to implement Gestures.

5. Designing the mobile app to implement the theming and styling.

6. Designing the mobile app to implement the routing.

7. Designing the mobile app to implement the animation.

8. Designing the mobile app to implement the state management.

9. Designing the mobile app working with SQLite Database.

10. Designing the mobile app working with Firebase.

LAB Manual

 Flutter Basics and Configuration

1. Introduction to Flutter

 Flutter is a cross-platform UI toolkit that allows us to create fast, beautiful,
natively compiled applications for mobile, web, and desktop using Dart
programming languages.

 It uses a single programming language and a single codebase to create the
app. It is open-source and free. It was created by Google in May 2017 and
is now run according to an ECMA standard. It is a technology that is
becoming more and more popular for providing excellent native
experiences.

 1.1 FEATURES OF FLUTER

 Cross-platform development : Flutter makes it possible to create desktop, web,
iOS, and Android apps from a single codebase. Significant time and money are
therefore saved.

 Hot Reload : The hot reload function of Flutter increases developer efficiency
by rapidly implementing code changes without restarting the application.

 Flexible and expressive UI : Building adaptable and visually appealing user
interfaces is made possible by Flutter's layered architecture and robust widget
collection.

 Native performance : On both iOS and Android, Flutter compiles to native
code for smooth 60 fps animations and scrolling.

 Free and open source : With a helpful community of developers and
contributors, Flutter is free and open source.

 Accessible widgets : Flutter widgets come with accessibility capabilities and
user interfaces to help developers make accessible apps.

 Rapid prototyping : Building MVPs and prototypes is made simple by Flutter's
extensive widget library.

 1.2 ADVANTAGES OF FLUTTER

 Dart offers an extensive library of software packages that you can use to
increase the functionality of your application.

Mobile Programming Practical (MU- B.Sc-IT- Sem 3) (Lab Practical)…Page no (L-2)

(New Syllabus w.e.f academic year 23-24) (BI-06) Tech-Neo Publications

 Developers only need to write one code base to support both applications (on the
iOS and Android platforms).

 Flutter needs less testing.

 Fast development is possible with Flutter due to its simplicity.

 Developers have complete control over the widgets and their layout with Flutter.

 Flutter provides excellent developer tools with great hot reload.

 1.3 DISADVANTAGES OF FLUTTER

 Since it is coded in Dart language, a developer needs to learn a new language
(though it is easy to learn).

 Modern frameworks make every effort to keep logic and user interface apart,
whereas Flutter blends the two together. This can be avoided through the use of
smart code and high-level modules to divide user interface from logic.

 Another framework for making mobile applications is Flutter. In a very
overcrowded market, developers are struggling to select the best development
tools.

 1.4 LIST OF SOFTWARE'S REQUIRED FOR
INSTALLATION

1. Flutter sdk (version 3.7.4 or latest)
2. Android Studio (version 2021.3.1.17 or latest)
3. Visual Studio (Visual Studio Community 2022 17.5.0 or latest)
4. Git
5. Google chrome browser

 1.5 STEPS TO SET UP AN SYSTEM

1. First download Flutter sdk(you will get the downloaded file in zip format) then
extract the zip file and place it in C drive.

2. Download and install Android Studio then start Android Studio, and go through
the ‘Android Studio Setup Wizard’. Then install the latest Android SDK,
Android SDK Command-line Tools, and Android SDK Build-Tools, which are
required by Flutter when developing for Android.(Open Android studio - Tools -
SDK manager - select the options given in the below screenshot and click
on ok.)

Mobile Programming Practical (MU- B.Sc-IT- Sem 3) (Lab Practical)…Page no (L-3)

(New Syllabus w.e.f academic year 23-24) (BI-06) Tech-Neo Publications

3. Install Visual Studio (Latest version).(after installation when you open Visual
Studio select the field “Desktop development with C++” option and click on
Install as shown below).

4. Install Git software.

Mobile Programming Practical (MU- B.Sc-IT- Sem 3) (Lab Practical)…Page no (L-4)

(New Syllabus w.e.f academic year 23-24) (BI-06) Tech-Neo Publications

 1.6 ENVIRONMENT SET UP

1. From the Start search bar, enter ‘env’ and select Edit environment variables for
your account.

2. Under System variables check if there is an entry called Path:

Select path and click on Edit.
3. Add the following path to this variable and click on ok.

 1.7 COMMAND PROMPT CODE

1. Open command prompt run the following command to see if there are any
platform dependencies you need to complete the setup:
C:\flutter>flutter doctor

 This command checks your environment and displays a report of the status of
your Flutter installation. Check the output carefully for other software you might
need to install or further tasks to perform.

2. Before you can use Flutter, you must agree to the licenses of the Android SDK
platform. Run the following command to begin signing licenses.
C:\flutter>flutter doctor --android-licenses

3. Once you are done agreeing with licenses, run flutter doctor again to confirm
that you are ready to use Flutter.
C:\flutter>flutter doctor
If everything is OK you will get following screen on command prompt

Mobile Programming Practical (MU- B.Sc-IT- Sem 3) (Lab Practical)…Page no (L-5)

(New Syllabus w.e.f academic year 23-24) (BI-06) Tech-Neo Publications

4. To check the version of flutter installed on your system type the following

command:

C:\flutter>flutter --version

 1.8 INSTALLATION OF FLUTTER AND DART PLUGIN
IN ANDROID STUDIO

 Flutter and Dart plugin in Android Studio provides a startup template to create a

new Flutter application.

 It is used to run and debug Flutter applications in the Android studio.

 Steps to install Dart plugin in Android Studio are as follows:

o Open android studio Go to file - setting - plugin - type dart in the search bar

and then install Dart plugin and click on OK.

Mobile Programming Practical (MU- B.Sc-IT- Sem 3) (Lab Practical)…Page no (L-6)

(New Syllabus w.e.f academic year 23-24) (BI-06) Tech-Neo Publications

 Steps to install Flutter plugin in Android Studio are as follows:
o Open android studio Go to file - setting - plugin - type flutter in the search

bar and then install Flutter plugin and click on OK.

After installation of Dart and Flutter plugin Restart the android studio.

Mobile Programming Practical (MU- B.Sc-IT- Sem 3) (Lab Practical)…Page no (L-7)

(New Syllabus w.e.f academic year 23-24) (BI-06) Tech-Neo Publications

Example : Now we will create a simple application in Android Studio to understand

the basics of the Flutter application. To create Flutter application, do the following

steps:

 Step 1 : Open the Android Studio.

 Step 2 : Create the Flutter project. To create a project, go to File-> New->New

Flutter Project.

Mobile Programming Practical (MU- B.Sc-IT- Sem 3) (Lab Practical)…Page no (L-8)

(New Syllabus w.e.f academic year 23-24) (BI-06) Tech-Neo Publications

 Step 3 : Select Flutter and Set flutter sdk path as: c:\flutter as shown in below

screenshot.

 Step 4 : Next, configure the application details as shown in the below screen and

click on the Next button.

Set project name as hello_world and select project location.

Keep the remaining field as it is and click on create.

Mobile Programming Practical (MU- B.Sc-IT- Sem 3) (Lab Practical)…Page no (L-9)

(New Syllabus w.e.f academic year 23-24) (BI-06) Tech-Neo Publications

 Step 5 : After clicking the Create button, it will take some time to create a
project. When the project is created, you will get a fully working Flutter
application with minimal functionality.

 Step 6 : Now, let us check the structure of the Flutter project application and its
purpose. In the below image, you can see the various folders and
components of the Flutter application structure.

Mobile Programming Practical (MU- B.Sc-IT- Sem 3) (Lab Practical)…Page no (L-10)

(New Syllabus w.e.f academic year 23-24) (BI-06) Tech-Neo Publications

 android : This folder holds a complete Android project and is used when

you build the Flutter application for Android.

 .idea : This folder is at the very top of the project structure, which holds

the configuration for Android Studio.

 .ios : This folder holds a complete Mac project and is used when you build

the Flutter application for iOS.

 .lib : It is an essential folder, which stands for the library which contains

Dart code written using flutter framework. By default, this folder contains

the file main.dart, which is the entry file of the Flutter application.

 .test : This folder contains a Dart code, which is written for the Flutter

application to perform the automated test when building the app.

 .gitignore : It is a text file containing a list of files, file extensions, and

folders that tells Git which files should be ignored in a project. Git is a

version-control file for tracking changes in source code during software

development.

 .metadata : It is an auto-generated file by the flutter tools, which is used to

track the properties of the Flutter project.

 .packages : It is an auto-generated file by the Flutter SDK, which is used

to contain a list of dependencies for your Flutter project.

 hello_world.iml : It is always named according to the Flutter project's

name that contains additional settings of the project. This file performs the

internal tasks, which is managed by the Flutter SDK.

 pubspec.yaml : It is the project's configuration file that will be used a lot

during working with the Flutter project. It allows you how your application

works.

o This file contains:

o Project general setting such as name,description, and version of the

project.

o Project dependencies

o Project assets(e.g. images)
 pubspec.lock : It is an auto-generated file based on the .yaml file. It holds

a more detailed setup about all dependencies.

 README.md : It is an auto-generated file that holds information about

the project. We can edit this file if we want to share information with the

developers.

Mobile Programming Practical (MU- B.Sc-IT- Sem 3) (Lab Practical)…Page no (L-11)

(New Syllabus w.e.f academic year 23-24) (BI-06) Tech-Neo Publications

 Step 7 : Open the main.dart file (Expand lib folder -> main.dart)and replace the
code with the following code.

import 'package:flutter/material.dart';

void main() {
 runApp(const MyApp());
}

class MyApp extends StatelessWidget {
 const MyApp({Key? key}) : super(key: key);

 @override
 Widget build(BuildContext context) {
 return const MaterialApp(
 home: Center(child: Text('Hello World')),
);
 }
}

 import 'package:flutter/material.dart : Here we are importing the

package which has a definition for Stateless Widget, Center, Text, Material

App, and many more. It is like #include<iostream> in C++ program.

 MyApp : It is a user Defined class that inherits Stateless Widget, that is all

the property of Stateless Widget is in GeeksForGeeks

 Build : It is a method that is responsible for drawing components on the

Screen it takes a BuildContext as an argument that has information about

which widget has to be displayed and in which order it has to be painted on

the screen.

 Step 8 : Select windows desktop to see the output.

Mobile Programming Practical (MU- B.Sc-IT- Sem 3) (Lab Practical)…Page no (L-12)

(New Syllabus w.e.f academic year 23-24) (BI-06) Tech-Neo Publications

 Step 9 : Now run the project -> Go to Run → click on Run ‘main.dart’

 Step 10 : Finally, you will get the output as shown below screen.

Note : To get the apk of your application you can build your project Go to

Build -> Build -> Build APK as shown in below image.

Mobile Programming Practical (MU- B.Sc-IT- Sem 3) (Lab Practical)…Page no (L-13)

(New Syllabus w.e.f academic year 23-24) (BI-06) Tech-Neo Publications

 After building the project you will get the path of your application apk in the
terminal window on the same screen of android studio. (To get apk browse
project location and follow the path given in the terminal window of android
studio.)

 Practical 1 : Aim : Program to demonstrate the features of Dart
language.

 Dart Programming

 Dart is a general-purpose, object-oriented, open-source programming language
with C-style syntax that Google created in 2011.

 Dart programming is used to develop the front ends of user interfaces for
websites and mobile applications.

 It is actively being developed, compiled to native machine code for creating
mobile apps, Strongly Typed, and inspired by popular programming languages
like Java, JavaScript, and C#.

 Dart is a compiled language, therefore you can't run your code straight away; the
compiler must parse it first before converting it to machine code.

 Unlike other programming languages, it provides the majority of basic
programming concepts including classes, interfaces, and functions.

 Dart is case-sensitive. This means that Dart differentiates between uppercase and
lowercase characters.
The following example shows simple Dart programming.

 Expand the lib folder and open the dart_program.dart file and write the below

code.

void main() {
print(‘hello world’);
}

Mobile Programming Practical (MU- B.Sc-IT- Sem 3) (Lab Practical)…Page no (L-14)

(New Syllabus w.e.f academic year 23-24) (BI-06) Tech-Neo Publications

 Step 1 : Open android studio -> Click on file menu -> New ->New flutter project

as shown in below screenshot.

 Step 2 : Select Dart and Set Dart sdk path as: c:\flutter\bin\cache\dart-sdk then

click on next.

Mobile Programming Practical (MU- B.Sc-IT- Sem 3) (Lab Practical)…Page no (L-15)

(New Syllabus w.e.f academic year 23-24) (BI-06) Tech-Neo Publications

 Step 3 : Set project name dart_program and select project location then click on

create.

 Step 4 : In the dart_program.dart file type the following program shown in the

following screenshot.

Mobile Programming Practical (MU- B.Sc-IT- Sem 3) (Lab Practical)…Page no (L-16)

(New Syllabus w.e.f academic year 23-24) (BI-06) Tech-Neo Publications

 Step 5 : Then click on Run - Run ‘dart_program.dart’

 Step 6 : Finally, you will get the output as shown below screen.

 The main() function is a predefined method in Dart. This method acts as the
entry point to the application. A Dart script needs the main() method for
execution.

 print() is a predefined function that prints the specified string or value to the
standard output i.e. the terminal.

1. Variables and Data types

 A variable is "a named space in the memory" that keeps values. This
means that it acts like a program's value container.

 Data types simply describe the type and amount of data connected to
variables and functions and are used to describe variable names.

 Following are the naming rules for an identifier −
o Identifiers cannot be keywords.
o Identifiers can contain alphabets and numbers.

Mobile Programming Practical (MU- B.Sc-IT- Sem 3) (Lab Practical)…Page no (L-17)

(New Syllabus w.e.f academic year 23-24) (BI-06) Tech-Neo Publications

o Identifiers cannot contain spaces and special characters, except the
underscore (_) and the dollar ($) sign.

o Variable names cannot begin with a number.
 Syntax to declare variable:

A variable must be declared before it is used. Dart uses the var keyword to
achieve the same.

The syntax for declaring a variable is as given below −
var name = ‘Neha’;
All variables in dart store a reference to the value rather than containing the
value. The variable called name contains a reference to a String object with
a value of “Neha”.

 The final and const keywords are used to declare constants. They are
defined as Below :

 void main() {
 final a = 12;
 const pi = 3.14;
 print(a);
 print(pi);
 }

 Dart language supports the following data types:
o Numbers − It is used to represent numeric literals – Integer and

Double.
o Strings − It represents a sequence of characters. String values are

specified in either single or double quotes.
o Booleans − Dart uses the bool keyword to represent Boolean values –

true and false.
o Lists and Maps − It is used to represent a collection of objects.
A simple program for List can be defined as below :

 void main() {
 var list = [1,2,3,4,5];
 print(list);
 }

 Output for the above program is : 1,2,3,4,5

1. Operators

 An expression is a specific type of statement that yields a value. Every
expression is composed of:
o Operands − Represents the data

Mobile Programming Practical (MU- B.Sc-IT- Sem 3) (Lab Practical)…Page no (L-18)

(New Syllabus w.e.f academic year 23-24) (BI-06) Tech-Neo Publications

o Operator − Defines how the operands will be processed to produce a
value.

 Consider the following expression “2 + 3”. In this expression, 2 and 3 are
operands and the symbol+ (plus) is the operator.

 Types of Operators

1. Arithmetic Operators 2. Relational Operators
3. Type Test Operators 4. Logical Operators
5. Assignment Operators

1. Arithmetic Operators

 The operators that are used to carry out arithmetic operations on the operands
are included in this class of operators. They are binary operators i.e they act on
two operands.

Operator
Symbol

Operator
Name

Operator Description

+ Addition Use to add two operands

- Subtraction Use to subtract two operands

-expr Unary Minus It is Use to reverse the sign of the expression

* Multiply Use to multiply two operands

/ Division Use to divide two operands

~/ Division Use to divide two operands but give output in
Integer

% Modulus Use to give remainder of two operands

Example

void main()
{
 int a = 2;
 int b = 3;
 // Adding a and b
 var c = a + b;
 print("Sum of a and b is $c");
 // Subtracting a and b
 var d = a - b;
 print("The difference between a and b is $d");

 // Using unary minus
 var e = -d;
 print("The negation of difference between a and b is $e");
 // Multiplication of a and b
 var f = a * b;

Mobile Programming Practical (MU- B.Sc-IT- Sem 3) (Lab Practical)…Page no (L-19)

(New Syllabus w.e.f academic year 23-24) (BI-06) Tech-Neo Publications

 print("The product of a and b is $f");
 // Division of a and b
 var g = b / a;
 print("The quotient of a and b is $g");
 // Remainder of a and b
 var i = b % a;
 print("The remainder of a and b is $i");
}

Output

Sum of a and b is 5
The difference between a and b is -1
The negation of difference between a and b is 1
Product of a and b is 6
The quotient of a and b is 1.5
The quotient of a and b is 1
The remainder of a and b is 1
2. Relational Operators

The operators that carry out relational operations on the operands are included in

this class of operators.

Operator
Symbol

Operator
Name

Operator Description

> Greater
than

Identify the larger operand and provide the result as
Boolean expression.

< Less than Identify the smaller operand and provide the result as
Boolean expression.

>= Greater
than or
equal to

Identify which operand is greater or equal to each
other and give the result as a boolean expression.

<= less than
equal
to

Identify which operand is less than or equal to each
other and give the result as a boolean expression.

== Equal to Identify whether the operand are equal to each other
or not and give the result as a boolean expression.

!= Not
Equal to

Identify whether the operand are not equal to each
other or not and give the result as a boolean
expression.

Mobile Programming Practical (MU- B.Sc-IT- Sem 3) (Lab Practical)…Page no (L-20)

(New Syllabus w.e.f academic year 23-24) (BI-06) Tech-Neo Publications

Example : Using Relational Operators in the program

void main()
{
 int a = 2;
 int b = 3;

 // Greater between a and b
 var c = a > b;
 print("a is greater than b is $c");

 // Smaller between a and b
 var d = a < b;
 print("a is smaller than b is $d");

 // Greater than or equal to between a and b
 var e = a >= b;
 print("a is greater than or equal to b is $e");

 // Less than or equal to between a and b
 var f = a <= b;
 print("a is smaller than or equal to b is $f");

 // Equality between a and b
 var g = b == a;
 print("a and b are equal is $g");

 // Inequality between a and b
 var h = b != a;
 print("a and b are not equal is $h");
}

Output

a is greater than b is false
a is smaller than b is true
a is greater than or equal to b is false
a is smaller than or equal to b is true
a and b are equal is false
a and b are not equal is true

Mobile Programming Practical (MU- B.Sc-IT- Sem 3) (Lab Practical)…Page no (L-21)

(New Syllabus w.e.f academic year 23-24) (BI-06) Tech-Neo Publications

3. Type Test Operators

Operators that are used to compare operands are included in this class of
operators.

Operator
Symbol

Operator
Name

Operator Description

is is Gives boolean value true as output if the object
has specific type

is! Is not Gives boolean value false as output if the object
has specific type

Example : Using Type Test Operators in the program

void main()
{
 String a = 'JAY';
 double b = 3.3;

 // Using is to compare
 print(a is String);

 // Using is! to compare
 print(b is !int);
}

Output

true
True

4. Logical Operators

Operators that logically combine two or more operand conditions are included in
this class of operators.

Operator
Symbol

Operator
Name

Operator Description

&& AND
Operator

Use to add two conditions and if both are true then
it will return true.

|| OR Operator Use to add two conditions and if even one of them
is true then it will return true.

! NOT
Operator

It is use to reverse the result.

Mobile Programming Practical (MU- B.Sc-IT- Sem 3) (Lab Practical)…Page no (L-22)

(New Syllabus w.e.f academic year 23-24) (BI-06) Tech-Neo Publications

Example : Using Logical Operators in the program

void main()
{
 int a = 15;
 int b = 12;

 // Using And Operator
 bool c = a > 10 && b < 10;
 print(c);

 // Using Or Operator
 bool d = a > 10 || b < 10;
 print(d);

 // Using Not Operator
 bool e = !(a > 10);
 print(e);
}

Output

false
true
false

5. Assignment Operators

The operators that are used to assign values to the operands are included in this
class of operators.

Operator
Symbol

Operator Name Operator Description

= Equal to Use to assign values to the expression or

variable

??= Assignment

operator

Assign the value only if it is null.

Example

 void main()
{
 int a = 5;

Mobile Programming Practical (MU- B.Sc-IT- Sem 3) (Lab Practical)…Page no (L-23)

(New Syllabus w.e.f academic year 23-24) (BI-06) Tech-Neo Publications

 int b = 7;

 // Assigning value to variable c
 var c = a * b;
 print(c);

 // Assigning value to variable d
 var d;
 d ??= a + b; // Value is assign as it is null
 print(d);
 // Again trying to assign value to d
 d ??= a - b; // Value is not assign as it is not null
 print(d);
}

Output

35
12
12

3. Decision Making and Loops

 Conditional statements : A decision making block evaluates a condition
before the instructions are executed. Dart supports If, If..else and switch
statements.

1. If Statement

 The statements contained in this kind of statement merely check the
condition, and if it is true, they are executed; however, if it is false, the
statements are simply neglected by the code.

The syntax of if statement is given below.

Syntax

If (condition) {
 //statement(s)
}

The following example shows example of If statement loop:
void main () {
 // define a variable which hold numeric value
 var n = 35;

 // if statement check the given condition

Mobile Programming Practical (MU- B.Sc-IT- Sem 3) (Lab Practical)…Page no (L-24)

(New Syllabus w.e.f academic year 23-24) (BI-06) Tech-Neo Publications

 if (n<40){
 print("The number is smaller than 40");
 };
}

Output

The number is smaller than 40

2. If-else statement

 An optional else block can come after an if. If the Boolean expression
checked by the if block returns false, the else block will be executed.

Following is the syntax.

if(boolean_expression){
 // statement(s) will execute if the Boolean expression is true.
} else {
 // statement(s) will execute if the Boolean expression is false.
}
void main () {
 // define a variable which holds a numeric value
 var age = 17;

 // if statement check the given condition
 if (age > 18) {
 print("You are eligible for voting");
 } else {
 print("You are not eligible for voting");
 }
}

Output

You are not eligible for voting

3. else…if Ladder :

 This kind of statement merely checks the condition; if it is true, the
statements contained inside are executed; if not, other if conditions are
checked; if they are true, they are executed; and if not, they are checked.
Up to the ladder is finished, this process is repeated.

Syntax

if (condition1){

 // body of if

}

Mobile Programming Practical (MU- B.Sc-IT- Sem 3) (Lab Practical)…Page no (L-25)

(New Syllabus w.e.f academic year 23-24) (BI-06) Tech-Neo Publications

else if (condition2){

 // body of if

}

.

.

.

else {

 // statement

}

Example

void main() {
 var num = 2;
 if(num > 0) {
 print("$num is positive");
 }
 else if(num < 0) {
 print("$num is negative");
 } else {
 print("$num is neither positive nor negative");
 }
}

Output

2 is positive

 Loops : Loops are used to repeat a block of code until a specific condition

is met. Dart supports for, for..in , while and do..while loops.

4. For loop

 The for loop is used when we know how many times a block of code will

execute. It is quite the same as the C for loop.

Syntax

for(Initialization; condition; incr/decr) {
// loop body
}

Mobile Programming Practical (MU- B.Sc-IT- Sem 3) (Lab Practical)…Page no (L-26)

(New Syllabus w.e.f academic year 23-24) (BI-06) Tech-Neo Publications

Example :

For loop Example :

The following example shows example of for loop:

void main() {
 for (int i = 0; i < 5; i++) {
 print('HI ${i + 1}');
 }
}

Output

HI 1
HI 2
HI 3
HI 4
HI 5

1. for… in Loop

 It only iterates each element once, using a dart object or expression as the
lone iterator. The element's value is bound to var, which is valid and
available for the body of the loop.

 The loop will keep going until there are no more elements in the iterator.

Syntax

 for (var in expression) {
//statement(s)
}

Example

void main()
{
 var abc = [1,2,3,4];
 for(var i in abc) //for..in loop to print list element
 {
 print(i); //to print the number
 }
}

Mobile Programming Practical (MU- B.Sc-IT- Sem 3) (Lab Practical)…Page no (L-27)

(New Syllabus w.e.f academic year 23-24) (BI-06) Tech-Neo Publications

Output

1
2
3
4

2. while loop

 The while loop repeats a section of code until the specified expression
evaluates to false. When we don't know the number of executions, it is
more efficient.

Syntax

while(condition) {
 // loop body
}

Example

void main()
{
 var a = 1;
 var maxnum = 6;
 while(a<maxnum){ // it will print until the expression return false
 print(a);
 a = a+1; // increase value 1 after each iteration
}
}

Output

1
2
3
4
5
3. Functions

 A function is a group of statements that together performs a specific task.

void main() {
 add(3,4);
}

Mobile Programming Practical (MU- B.Sc-IT- Sem 3) (Lab Practical)…Page no (L-28)

(New Syllabus w.e.f academic year 23-24) (BI-06) Tech-Neo Publications

void add(int a,int b) {
 int c;
 c = a+b;
 print(c);
}

Output

 7

4. Object Oriented concept

 Dart is an object-oriented language. It supports object-oriented
programming features like classes, interfaces, etc.

Example

class Employee {
 String name="";

 //getter method
 String get emp_name {
 return name;
 }
 //setter method
 void set emp_name(String name) {
 this.name = name;
 }
 //function definition
 void result() {
 print(name);
 }
}
void main() {
 //object creation
 Employee emp = new Employee();
 emp.name = "employee1";
 emp.result(); //function call
}

Output

employee1

Mobile Programming Practical (MU- B.Sc-IT- Sem 3) (Lab Practical)…Page no (L-29)

(New Syllabus w.e.f academic year 23-24) (BI-06) Tech-Neo Publications

 Practical 2 : Aim : Designing mobile app to implement different widgets.

 What are widgets in Flutter ?

 The primary class hierarchy in the Flutter framework consists of widgets. An
immutable description of a component of a user interface is referred to as a
widget. It is possible to inflate widgets into elements that control the underlying
render tree.

 The Flutter app's screens are made up entirely of widgets. The selection and
arrangement of the widgets used to design the apps have a significant impact on
how the screen is shown. A tree of widgets makes up the code structure of an
app.

 Flutter offers a wide range of fundamental widgets to enable platform-
independent creation of both simple and complex user interfaces.

 It includes a text widget, row widget, column widget, container widget, and
many more.

 Types of widget

In Flutter, there are mainly two types of widget:

1. StatelessWidget

2. StatefulWidget
1. Stateless Widget : There is no state information available in the

StatelessWidget. Throughout its entire lifespan, it doesn't change. Text, Row,
Column, and Container are a few examples of StatelessWidgets.

2. StatefulWidget : A StatefulWidget has state information. The state object and
the widget are its two core classes. The state object and the widget are its two
core classes. It is dynamic because the internal data may vary during the course
of the widget's lifespan. The build() method is absent from this widget. A class
that extends the Flutters State Class is returned by the createState() method,
which is present. Checkbox, Radio, Slider, InkWell, Form, and TextField are a
few examples of StatefulWidgets.

 Basic widgets

 Text : To write anything on the screen.
 Image : A widget that displays the image.
 Icon : A material design icon.
 Row : Layout a list of child widgets in the Horizontal direction.
 Column : Layout a list of child widgets in the vertical direction.
 Elevated button : A filled button whose material elevates when pressed.
 Scaffold : Implements the basic material design visual layout structure.
 Flutter logo : The flutter logo, in widget form.
 AppBar : To create a bar at the top of the screen.
 Container : To contain any widget that combines common painting,positioning,

and sizing widgets.

Mobile Programming Practical (MU- B.Sc-IT- Sem 3) (Lab Practical)…Page no (L-30)

(New Syllabus w.e.f academic year 23-24) (BI-06) Tech-Neo Publications

1. Following is the example to use Image in the application

The easiest option to load and display an image in Flutter is by including the

image as assets of the application and loading it into the widget on demand.

 Step 1 : Open android studio -> Click on file -> New -> New flutter project as

shown in below screenshot.

Mobile Programming Practical (MU- B.Sc-IT- Sem 3) (Lab Practical)…Page no (L-31)

(New Syllabus w.e.f academic year 23-24) (BI-06) Tech-Neo Publications

 Step 2 : Select Flutter and Set flutter sdk path as: c:\flutter as shown below.

 Step 3 : Set project name widget_new and select project location.

Keep the remaining field as it is and click on create.

Mobile Programming Practical (MU- B.Sc-IT- Sem 3) (Lab Practical)…Page no (L-32)

(New Syllabus w.e.f academic year 23-24) (BI-06) Tech-Neo Publications

 Step 4 : Create a folder, images in the project folder and place the necessary

images. (Right click on project name – click on New – Directory – Set

name as images then copy any image to this folder images.) after

creating the image folder, the project structure will look like the

following.

Mobile Programming Practical (MU- B.Sc-IT- Sem 3) (Lab Practical)…Page no (L-33)

(New Syllabus w.e.f academic year 23-24) (BI-06) Tech-Neo Publications

 Step 5 : Specify the assets in the pubspec.yaml as shown below −

pubspec.yaml

 Step 6 : Click on Pub get.

If everything is OK you will get following message in terminal:

Mobile Programming Practical (MU- B.Sc-IT- Sem 3) (Lab Practical)…Page no (L-34)

(New Syllabus w.e.f academic year 23-24) (BI-06) Tech-Neo Publications

 Step 7 : Type following code in main.dart file.

main.dart

import 'package:flutter/material.dart';
 void main() {
 runApp(MyApp());
 }
 class MyApp extends StatelessWidget {
 Widget build(BuildContext context) {
 return MaterialApp(
 home: Scaffold(
 appBar: AppBar(
 title: Text("My first App"),
),
 body: Image(
 image: AssetImage('images/smile.png'),
),
),
);
 }
 }

 Step 8 : To see the output select windows desktop as shown in below

screenshot.

 Step 9 : Now Run the project -> Run -> run main.dart file

 Step 10 : When you run the program you will get the following output.

Mobile Programming Practical (MU- B.Sc-IT- Sem 3) (Lab Practical)…Page no (L-35)

(New Syllabus w.e.f academic year 23-24) (BI-06) Tech-Neo Publications

 Code to demonstrate the use of Text, Icon, ElevatedButton, Row, column
widget.

main.dart :

import 'package:flutter/material.dart';
 void main() {
 runApp(const MyApp());
 }
 class MyApp extends StatelessWidget {
 const MyApp({super.key});
 // This widget is the root of your application.
 @override
 Widget build(BuildContext context) {
 return MaterialApp(
 title: 'Flutter Demo',
 theme: ThemeData(
 colorScheme: ColorScheme.fromSeed(seedColor: Colors.deepPurple),
 useMaterial3: true,
),
 home: const Home(),
);
 }

Mobile Programming Practical (MU- B.Sc-IT- Sem 3) (Lab Practical)…Page no (L-36)

(New Syllabus w.e.f academic year 23-24) (BI-06) Tech-Neo Publications

 }
 class Home extends StatelessWidget {
 const Home({super.key});
 @override
 Widget build(BuildContext context) {
 return Scaffold(
 appBar: AppBar(title: const Text('Sample Application'),),
 body: const Text('Text1', style: TextStyle(color: Colors.red, fontSize: 20),),
);
 }
 }

Note : Following is the Sample code of individual Widget.To use it,

replace the below-listed code with the above-highlighted code.

2. Text: It is used to display text.

Code :

const Text('Text1', style: TextStyle(color: Colors.red, fontSize: 20),),

Output

Mobile Programming Practical (MU- B.Sc-IT- Sem 3) (Lab Practical)…Page no (L-37)

(New Syllabus w.e.f academic year 23-24) (BI-06) Tech-Neo Publications

3. ElevatedButton

A filled button whose material elevates when pressed.

Code :

ElevatedButton(onPressed: (){}, child: Text('Submit')),

Output

4. Icon

Icon widget is used to display a glyph from a font described in IconData class.

Code :

 Row(
 mainAxisAlignment: MainAxisAlignment.spaceAround,
 children: <Widget>[
 Icon(
 Icons.favorite,
 color: Colors.pink,
 size: 24.0,
 semanticLabel: 'Text to announce in accessibility modes',
),
 Icon(
 Icons.audiotrack,
 color: Colors.green,

Mobile Programming Practical (MU- B.Sc-IT- Sem 3) (Lab Practical)…Page no (L-38)

(New Syllabus w.e.f academic year 23-24) (BI-06) Tech-Neo Publications

 size: 30.0,
),
 Icon(
 Icons.beach_access,
 color: Colors.blue,
 size: 36.0,
),
],
)

Output

5. Row

Layout a list of child widgets in the Horizontal direction.

Code

 Row(
 children: <Widget>[
 Expanded(
 child: Text('Deliver features faster', textAlign: TextAlign.center),
),
 Expanded(
 child: Text('Craft beautiful UIs', textAlign: TextAlign.center),
),

Mobile Programming Practical (MU- B.Sc-IT- Sem 3) (Lab Practical)…Page no (L-39)

(New Syllabus w.e.f academic year 23-24) (BI-06) Tech-Neo Publications

 Expanded(
 child: FittedBox(
 child: FlutterLogo(),
),
),
],
)

Output

6. Column

Layout a list of child widgets in the Vertical direction.

Code

 Column(
 children: <Widget>[
 Text('Deliver features faster'),
 Text('Craft beautiful UIs'),
 Expanded(
 child: FittedBox(
 child: FlutterLogo(),
),
),
],
)

Mobile Programming Practical (MU- B.Sc-IT- Sem 3) (Lab Practical)…Page no (L-40)

(New Syllabus w.e.f academic year 23-24) (BI-06) Tech-Neo Publications

Output

 Practical 3 : Aim : Designing the mobile app to implement different
Layout.

 Layout

 As the application is used on several platforms, including the web and mobile

devices with varying screen sizes, layout in Flutter describes how the material

expands in a certain area. As a result, dynamic content must be properly

displayed to the user.

 Widgets are the foundation of the layout in Flutter. Everything in Flutter,

including images, icons, text, and other elements, is a widget, including the

layout models.

 It enables us to create layouts by combining several widgets. Flutter also has a

few unique widgets, such as Center, Align, Container, and others, for organizing

the user interface.

Mobile Programming Practical (MU- B.Sc-IT- Sem 3) (Lab Practical)…Page no (L-41)

(New Syllabus w.e.f academic year 23-24) (BI-06) Tech-Neo Publications

 Types of Layout Widgets

1. Single Child Widget

 Single Child Widget is a type of widget that has only a single or one
widget inside the parent widget. These single child widgets are very simple
to use and make the code readable for the programmer.

 Flutter offers the programmer a large number of single child widgets so
they may easily and quickly create a beautiful user interface.

 The following is a description of a few of Single Child widgets that are
often used:
o Container
o Center
o Align
o Padding
o BaseLine
o SizedBox
o ConstrainedBox

2. Multiple Child Widget

 Multiple Child Widgets are the kind of widgets that have more than one
child widget, and each child widget has a different layout.

 For example, To create a table with rows and columns, for instance, a row
widget is used, which lays its child object in the horizontal direction, while
a column widget, on the other hand, lays its child object in the vertical
direction.Composing this will create a whole new level of a complex
widget.

 The following is a description of a few of Single Child widgets that are
often used :
o Column
o Row
o ListView
o Stack
o GridView

Example :

Code : main.dart

import 'package:flutter/material.dart';
 void main() {
 runApp(const MyApp());
 }
 class MyApp extends StatelessWidget {
 const MyApp({super.key});

Mobile Programming Practical (MU- B.Sc-IT- Sem 3) (Lab Practical)…Page no (L-42)

(New Syllabus w.e.f academic year 23-24) (BI-06) Tech-Neo Publications

 // This widget is the root of your application.
 @override
 Widget build(BuildContext context) {
 return MaterialApp(
 title: 'Flutter Demo',
 theme: ThemeData(
 colorScheme: ColorScheme.fromSeed(seedColor: Colors.deepPurple),
 useMaterial3: true,
),
 home: const Home(),
);
 }
 }
 class Home extends StatelessWidget {
 const Home({super.key});
 @override
 Widget build(BuildContext context) {
 return Scaffold(
 appBar: AppBar(title: const Text('Sample Application'),),
 body: const Center(
 child: Text('Hello World'),
),
);
 }
 }

Note : Following is the code of individual layout, to try this code replace

the below code with the above highlighted code.

1. Center : The child is centered using this widget. This widget derives from the

classAlign. It is one of the straightforward yet highly practical widgets used in

Flutter.

const Center(
 child: Text('Hello World'),
),

Mobile Programming Practical (MU- B.Sc-IT- Sem 3) (Lab Practical)…Page no (L-43)

(New Syllabus w.e.f academic year 23-24) (BI-06) Tech-Neo Publications

Output

2. Padding : One of the most popular widgets for giving child widgets the

necessary padding to fit inside the layout widget is padding. Padding in Flutter

can be provided using the EdgeInserts for the required sides.

const Card(

 child: Padding(

 padding: EdgeInsets.all(16.0),

 child: Text('Hello World!'),

),)

Output

Mobile Programming Practical (MU- B.Sc-IT- Sem 3) (Lab Practical)…Page no (L-44)

(New Syllabus w.e.f academic year 23-24) (BI-06) Tech-Neo Publications

3. Container : One of the simple, well-known, and box-based widgets with lots of

customizing options. It first surrounds the child with its child with padding and

itself with the empty space called margin. It applies the additional constraints to

the padded child.

Center(
 child: Container(
 margin: const EdgeInsets.all(10.0),
 color: Colors.amber[600],
 width: 48.0,
 height: 48.0,
),)

Output

4. Align : As the name implies, this widget uses the alignment attribute to align

each of its children within it. It has the option of sizing itself according to the

size of its child.

Center(

 child: Container(

 height: 120.0,

 width: 120.0,

 color: Colors.blue[50],

Mobile Programming Practical (MU- B.Sc-IT- Sem 3) (Lab Practical)…Page no (L-45)

(New Syllabus w.e.f academic year 23-24) (BI-06) Tech-Neo Publications

 child: const Align(

 alignment: Alignment.topRight,

 child: FlutterLogo(

 size: 60,

),

),

),

)

Output

5. SizedBox : This widget allows you to give the specified size to the child widget

through all screens.

const SizedBox(
 width: 200.0,
 height: 300.0,
 child: Card(child: Text('Hello World!')),
)

Mobile Programming Practical (MU- B.Sc-IT- Sem 3) (Lab Practical)…Page no (L-46)

(New Syllabus w.e.f academic year 23-24) (BI-06) Tech-Neo Publications

Output

6. ConstrainedBox : It is a widget that allows you to force additional constraints

on its child widget.

ConstrainedBox(

 constraints: const BoxConstraints.expand(),

 child: const Card(child: Text('Hello World!')),

)

Output

Mobile Programming Practical (MU- B.Sc-IT- Sem 3) (Lab Practical)…Page no (L-47)

(New Syllabus w.e.f academic year 23-24) (BI-06) Tech-Neo Publications

7. Row : Row widgets, in contrast to Column widgets, allow the horizontal display

of their child widgets. As it is considered incorrect to have more than one child

in the row, the Flutter Row widget also does not scroll.

Row(
 children: <Widget>[
 Expanded(
 child: Text('Deliver features faster', textAlign: TextAlign.center),
),
 Expanded(
 child: Text('Craft beautiful UIs', textAlign: TextAlign.center),
),
 Expanded(
 child: FittedBox(
 child: FlutterLogo(),
),
),
],
)

Output

8. Column : This widget enables the vertical display of its child widget, much like
a regular column. As it is seen to be an error to have more children than the
allocated space in the room, the Column widget in Flutter does not scroll.

Mobile Programming Practical (MU- B.Sc-IT- Sem 3) (Lab Practical)…Page no (L-48)

(New Syllabus w.e.f academic year 23-24) (BI-06) Tech-Neo Publications

Column(
 children: <Widget>[
 Text('Deliver features faster'),
 Text('Craft beautiful UIs'),
 Expanded(
 child: FittedBox(
 child: FlutterLogo(),
),
),
],
)

Output

9. ListView : It is one of the widgets in Flutter that programmers use the most
frequently. It permits the sequential display of its children in a scrolling fashion.
The programmer has a lot of options when using Flutter to construct a ListView.

ListView(
 padding: const EdgeInsets.all(8),
 children: <Widget>[
 Container(
 height: 50,
 color: Colors.amber[600],
 child: const Center(child: Text('Entry A')),

Mobile Programming Practical (MU- B.Sc-IT- Sem 3) (Lab Practical)…Page no (L-49)

(New Syllabus w.e.f academic year 23-24) (BI-06) Tech-Neo Publications

),
 Container(
 height: 50,
 color: Colors.amber[500],
 child: const Center(child: Text('Entry B')),
),
 Container(
 height: 50,
 color: Colors.amber[100],
 child: const Center(child: Text('Entry C')),
),
],
)

Output

10. GridView : With the help of this widget, programmers can make a scrollable 2D
array of widgets. It enables the horizontal and vertical arrangement of the cells
with repetitive patterns.

GridView.count(
 primary: false,
 padding: const EdgeInsets.all(20),
 crossAxisSpacing: 10,
 mainAxisSpacing: 10,
 crossAxisCount: 2,

Mobile Programming Practical (MU- B.Sc-IT- Sem 3) (Lab Practical)…Page no (L-50)

(New Syllabus w.e.f academic year 23-24) (BI-06) Tech-Neo Publications

 children: <Widget>[
 Container(
 padding: const EdgeInsets.all(8),
 color: Colors.teal[100],
 child: const Text("He'd have you all unravel at the"),
),
 Container(
 padding: const EdgeInsets.all(8),
 color: Colors.teal[200],
 child: const Text('Heed not the rabble'),
),
 Container(
 padding: const EdgeInsets.all(8),
 color: Colors.teal[300],
 child: const Text('Sound of screams but the'),
),
 Container(
 padding: const EdgeInsets.all(8),
 color: Colors.teal[400],
 child: const Text('Who scream'),
),
 Container(
 padding: const EdgeInsets.all(8),
 color: Colors.teal[500],
 child: const Text('Revolution is coming...'),
),
 Container(
 padding: const EdgeInsets.all(8),
 color: Colors.teal[600],
 child: const Text('Revolution, they...'),
),
],
)

Mobile Programming Practical (MU- B.Sc-IT- Sem 3) (Lab Practical)…Page no (L-51)

(New Syllabus w.e.f academic year 23-24) (BI-06) Tech-Neo Publications

Output

11. Stack : This widget enables the programmer to stack the various child widgets
in relation to the box’s edge. It is one of the most practical yet straightforward
methods used by programmers to overlap the child widgets in Flutter.

Stack(
 children: <Widget>[
 Container(
 width: 100,
 height: 100,
 color: Colors.red,
),
 Container(
 width: 90,
 height: 90,
 color: Colors.green,
),
 Container(
 width: 80,
 height: 80,
 color: Colors.blue,
),
],
)

Mobile Programming Practical (MU- B.Sc-IT- Sem 3) (Lab Practical)…Page no (L-52)

(New Syllabus w.e.f academic year 23-24) (BI-06) Tech-Neo Publications

Output

 Practical 4 : Aim : Designing mobile app to implement Gestures.

 Gestures

 Gestures are used to interact with an application. To physically interact with the
program, it is typically utilized in touch-based devices.

 Simple physical interactions like a single tap on the screen or more difficult ones
like swiping in a certain direction or scrolling along an application are all
possible with gestures.

 Following are a few commonly used gestures:
o Tap : putting a fingertip on the device's surface, holding it there for just a

little moment, and then releasing it.
o Double Tap : Tapping twice in a short time.
o Drag : Drag is the act of touching the device's surface with the tip of the

finger, moving it gradually, and then letting go.
o Flick : A quicker method of performing something similar to dragging.
o Pinch : Pinching the surface of the device using two fingers.
o Zoom : Opposite of pinching.
o Panning : Touching the device surface with the fingertip and moving it in

the desired direction without releasing the fingertip.

 GestureDetector

 Flutter uses the GestureDetector widget to track physical interaction with
the UI of the application.

 Flutter provides excellent support for all types of gestures through its
exclusive widget, GestureDetector.

 A widget can be inserted inside the GestureDetector widget in order to
recognise a gesture that is targeted on it.

Mobile Programming Practical (MU- B.Sc-IT- Sem 3) (Lab Practical)…Page no (L-53)

(New Syllabus w.e.f academic year 23-24) (BI-06) Tech-Neo Publications

 GestureDetector will capture the gesture and dispatch multiple events
based on the gesture.

Example 1

This example contains a black light bulb wrapped in a GestureDetector. It turns
the light bulb yellow when the "TURN LIGHT ON" button is tapped by setting the
_lights field, and off again when "TURN LIGHT OFF" is tapped.

Code : main.dart

import 'package:flutter/material.dart';

 /// Flutter code sample for [GestureDetector].

 void main() => runApp(const GestureDetectorExampleApp());

 class GestureDetectorExampleApp extends StatelessWidget {

 const GestureDetectorExampleApp({super.key});

 @override

 Widget build(BuildContext context) {

 return const MaterialApp(

 home: GestureDetectorExample(),

);

 }

 }

 class GestureDetectorExample extends StatefulWidget {

 const GestureDetectorExample({super.key});

 @override

 State<GestureDetectorExample> createState() =>

_GestureDetectorExampleState();

 }

 class _GestureDetectorExampleState extends

State<GestureDetectorExample> {

 bool _lightIsOn = false;

 @override

 Widget build(BuildContext context) {

 return Scaffold(

 body: Container(

 alignment: FractionalOffset.center,

Mobile Programming Practical (MU- B.Sc-IT- Sem 3) (Lab Practical)…Page no (L-54)

(New Syllabus w.e.f academic year 23-24) (BI-06) Tech-Neo Publications

 child: Column(

 mainAxisAlignment: MainAxisAlignment.center,

 children: <Widget>[

 Padding(

 padding: const EdgeInsets.all(8.0),

 child: Icon(

 Icons.lightbulb_outline,

 color: _lightIsOn ? Colors.yellow.shade600 : Colors.black,

 size: 60,

),

),

 GestureDetector(

 onTap: () {

 setState(() {

 // Toggle light when tapped.

 _lightIsOn = !_lightIsOn;

 });

 },

 child: Container(

 color: Colors.yellow.shade600,

 padding: const EdgeInsets.all(8),

 // Change button text when light changes state.

 child: Text(_lightIsOn ? 'TURN LIGHT OFF' : 'TURN LIGHT ON'),

),

),

],

),

),

);

 }

 }

Mobile Programming Practical (MU- B.Sc-IT- Sem 3) (Lab Practical)…Page no (L-55)

(New Syllabus w.e.f academic year 23-24) (BI-06) Tech-Neo Publications

Example 2 :

This example uses a Container that wraps a GestureDetector widget which
detects a tap. Since the GestureDetector does not have a child, it takes on the size of
its parent, making the entire area of the surrounding Container clickable. When
tapped, the Container turns yellow by setting the _color field. When tapped again, it
goes back to white.

Code : main.dart

import 'package:flutter/material.dart';
/// Flutter code sample for [GestureDetector].
void main() => runApp(const GestureDetectorExampleApp());
class GestureDetectorExampleApp extends StatelessWidget {
 const GestureDetectorExampleApp({super.key});
 @override
 Widget build(BuildContext context) {
 return const MaterialApp(
 home: GestureDetectorExample(),
);
 }
}
class GestureDetectorExample extends StatefulWidget {
 const GestureDetectorExample({super.key});
 @override

Mobile Programming Practical (MU- B.Sc-IT- Sem 3) (Lab Practical)…Page no (L-56)

(New Syllabus w.e.f academic year 23-24) (BI-06) Tech-Neo Publications

 State<GestureDetectorExample> createState() =>
_GestureDetectorExampleState();
}
class _GestureDetectorExampleState extends State<GestureDetectorExample>
{
 Color _color = Colors.white;
 @override
 Widget build(BuildContext context) {
 return Container(
 color: _color,
 height: 200.0,
 width: 200.0,
 child: GestureDetector(
 onTap: () {
 setState(() {
 _color == Colors.yellow
 ? _color = Colors.white
 : _color = Colors.yellow;
 });
 },
),
);
 }
}

Mobile Programming Practical (MU- B.Sc-IT- Sem 3) (Lab Practical)…Page no (L-57)

(New Syllabus w.e.f academic year 23-24) (BI-06) Tech-Neo Publications

 Practical 5 : Aim : Designing mobile app to implement the theming and
styling.

 Theming and Styling

 In order to share colors and font styles across an application, themes are a
crucial component of the user interface (UI).

 An application's fonts and colors are designed using themes to make it look
more professional.

 The Theme widget in Flutter is used to put themes into an application.
 It can be used for the entire program or only a specific area of it, such as the

buttons and navigation bar, by defining it in the application's root.
 We can define app-wide themes, or use Theme widgets that define the colors

and font styles for a particular part of the application.

 Properties of Theme Widget

 Child : The child property takes in a widget as the object to show below the
Theme widget in the widget tree.

 Data : This property takes in ThemeData class as the object to specify the
styling, colors and typography to be used.

 isMaterialAppTheme : This property takes in a boolean (final) as the object. If
it is set to true then the theme uses the material design.

Example :

Code : main.dart:

import 'package:flutter/material.dart';
void main() {
 runApp(const MyApp());
}
class MyApp extends StatelessWidget {
 const MyApp({super.key});
 @override
 Widget build(BuildContext context) {
 const appName = 'Custom Themes';
 return MaterialApp(
 title: appName,
 theme: ThemeData(
 // Define the default brightness and colors.
 brightness: Brightness.dark,
 primaryColor: Colors.lightBlue[800],
 // Define the default font family.
 fontFamily: 'Georgia',
 // Define the default `TextTheme`. Use this to specify the default

Mobile Programming Practical (MU- B.Sc-IT- Sem 3) (Lab Practical)…Page no (L-58)

(New Syllabus w.e.f academic year 23-24) (BI-06) Tech-Neo Publications

 // text styling for headlines, titles, bodies of text, and more.
 textTheme: const TextTheme(
 displayLarge: TextStyle(fontSize: 72, fontWeight: FontWeight.bold),
 titleLarge: TextStyle(fontSize: 36, fontStyle: FontStyle.italic),
 bodyMedium: TextStyle(fontSize: 14, fontFamily: 'Hind'),
),
),
 home: const MyHomePage(
 title: appName,
),
);
 }
}
class MyHomePage extends StatelessWidget {
 final String title;
 const MyHomePage({super.key, required this.title});
 @override
 Widget build(BuildContext context) {
 return Scaffold(
 appBar: AppBar(
 title: Text(title),
),
 body: Center(
 child: Container(
 color: Theme.of(context).colorScheme.secondary,
 child: Text(
 'Text with a background color',
 style: Theme.of(context).textTheme.titleLarge,
),
),
),
 floatingActionButton: Theme(
 data: Theme.of(context).copyWith(splashColor: Colors.yellow),
 child: FloatingActionButton(
 onPressed: () {},
 child: const Icon(Icons.add),
),
),
); }
}

Mobile Programming Practical (MU- B.Sc-IT- Sem 3) (Lab Practical)…Page no (L-59)

(New Syllabus w.e.f academic year 23-24) (BI-06) Tech-Neo Publications

 In above code to share a Theme across an entire app, provide a ThemeData to
the MaterialApp constructor. If no theme is provided, Flutter creates a default
theme for you. If you don’t want to inherit any application colors or font styles,
create a ThemeData() instance and pass that to the Theme widget. Now that
you’ve defined a theme, use it within the widgets’ build() methods by using the
Theme.of(context) method.

 The Theme.of(context) method looks up the widget tree and returns the nearest
Theme in the tree. If you have a standalone Theme defined above your widget,
that’s returned. If not, the app’s theme is returned.

Output

 Practical 6 : Aim : Design mobile app to implement the routing.

 Route

 The apps show their content in full-screen containers known as pages or screens.
The screens or pages are known as Routes in flutter.

 In a flutter, routes are referred to as Widgets.
 Using object-oriented principles, a route in Dart can be written in the form of

"Class". Each route has its own contents and user interface (UI) and can be
created as a distinct class.

Mobile Programming Practical (MU- B.Sc-IT- Sem 3) (Lab Practical)…Page no (L-60)

(New Syllabus w.e.f academic year 23-24) (BI-06) Tech-Neo Publications

 Navigator

 Navigator is a widget that helps us to navigate between the routes.
 The navigator follows the stack method when dealing with the routes. Based on

the actions made by the user, the routes are stacked one over the other and when
pressed back, it goes to the most recently visited route.

 Defining Home

 The "home page" must first be defined or initialized before we can begin
navigating.

 The home page can be any route according to our needs. The home usually will
be placed at the bottom of the navigator stack.

 Navigating to a Page

 The navigator widget contains a method named Navigator.push() that allows
users to go from their home to another route of the app.

 This method pushes the route on top of the home, thereby displaying the second
route.

 Navigating Back to Home

 To navigate back to home the navigator has a method called Navigator.pop().

 This helps us to remove the present route from the stack so that we go back to
our home route.

Example

Code: main.dart

import 'package:flutter/material.dart';

void main() {
 runApp(const MaterialApp(
 home: HomeRoute(),
));
}

class HomeRoute extends StatelessWidget {
 const HomeRoute({Key? key}) : super(key: key);

 @override
 Widget build(BuildContext context) {
 return Scaffold(
 appBar: AppBar(

Mobile Programming Practical (MU- B.Sc-IT- Sem 3) (Lab Practical)…Page no (L-61)

(New Syllabus w.e.f academic year 23-24) (BI-06) Tech-Neo Publications

 title: const Text('Welcome Page'),
 backgroundColor: Colors.green,
),
 body: Center(
 child: ElevatedButton(
 child: const Text('Click Me!'),
 onPressed: () {
 Navigator.push(
 context,
 MaterialPageRoute(builder: (context) => const SecondRoute()),
);
 }),
),
);
 }
}

class SecondRoute extends StatelessWidget {
 const SecondRoute({Key? key}) : super(key: key);
 @override
 Widget build(BuildContext context) {
 return Scaffold(
 appBar: AppBar(
 title: const Text("Click Me Page"),
 backgroundColor: Colors.green,
),
 body: Center(
 child: ElevatedButton(
 onPressed: () {
 Navigator.pop(context);
 },
 child: const Text('Home!'),
),
),
);
 }
}

Mobile Programming Practical (MU- B.Sc-IT- Sem 3) (Lab Practical)…Page no (L-62)

(New Syllabus w.e.f academic year 23-24) (BI-06) Tech-Neo Publications

Output

 Practical 7 : Aim : Designing the mobile app to implement the
animation.

 Animation

 Animations improve user experiences and increase the level of interactivity in
the applications.

 The Flutter Package offers several techniques for creating and utilizing
animation in our app.

 Explicit animations like FadeTransition, SizeTransition, and SlideTransition are
also included in the Flutter SDK. These simple animations are triggered by
setting a beginning and ending point.

1. Fade In transition

Code : main.dart:

import 'package:flutter/material.dart';
 /// Flutter code sample for [FadeTransition].
 void main() => runApp(const FadeTransitionExampleApp());
 class FadeTransitionExampleApp extends StatelessWidget {
 const FadeTransitionExampleApp({super.key});

Mobile Programming Practical (MU- B.Sc-IT- Sem 3) (Lab Practical)…Page no (L-63)

(New Syllabus w.e.f academic year 23-24) (BI-06) Tech-Neo Publications

 @override
 Widget build(BuildContext context) {
 return const MaterialApp(
 home: FadeTransitionExample(),
);
 }
 }
 class FadeTransitionExample extends StatefulWidget {
 const FadeTransitionExample({super.key});
 @override
 State<FadeTransitionExample> createState() =>
_FadeTransitionExampleState();
 }
 /// [AnimationController]s can be created with `vsync: this` because of
 /// [TickerProviderStateMixin].
 class _FadeTransitionExampleState extends State<FadeTransitionExample>
 with TickerProviderStateMixin {
 late final AnimationController _controller = AnimationController(
 duration: const Duration(seconds: 2),
 vsync: this,
)..repeat(reverse: true);
 late final Animation<double> _animation = CurvedAnimation(
 parent: _controller,
 curve: Curves.easeIn,
);
 @override
 void dispose() {
 _controller.dispose();
 super.dispose();
 }
 @override
 Widget build(BuildContext context) {
 return ColoredBox(
 color: Colors.white,
 child: FadeTransition(
 opacity: _animation,
 child: const Padding(padding: EdgeInsets.all(8), child: FlutterLogo()),
),
); }
 }

Mobile Programming Practical (MU- B.Sc-IT- Sem 3) (Lab Practical)…Page no (L-64)

(New Syllabus w.e.f academic year 23-24) (BI-06) Tech-Neo Publications

Output

2. Size transition

Code : main.dart :

import 'package:flutter/material.dart';
 /// Flutter code sample for [SizeTransition].
 void main() => runApp(const SizeTransitionExampleApp());
 class SizeTransitionExampleApp extends StatelessWidget {
 const SizeTransitionExampleApp({super.key});
 @override
 Widget build(BuildContext context) {
 return const MaterialApp(
 home: SizeTransitionExample(),);
 } }
 class SizeTransitionExample extends StatefulWidget {
 const SizeTransitionExample({super.key});
 @override
 State<SizeTransitionExample> createState() =>
_SizeTransitionExampleState();
 }
 /// [AnimationController]s can be created with `vsync: this` because of
 /// [TickerProviderStateMixin].
 class _SizeTransitionExampleState extends State<SizeTransitionExample>
 with TickerProviderStateMixin {
 late final AnimationController _controller = AnimationController(
 duration: const Duration(seconds: 3),

Mobile Programming Practical (MU- B.Sc-IT- Sem 3) (Lab Practical)…Page no (L-65)

(New Syllabus w.e.f academic year 23-24) (BI-06) Tech-Neo Publications

 vsync: this,
)..repeat();
 late final Animation<double> _animation = CurvedAnimation(
 parent: _controller,
 curve: Curves.fastOutSlowIn,
);
 @override
 void dispose() {
 _controller.dispose();
 super.dispose();
 }
 @override
 Widget build(BuildContext context) {
 return Scaffold(
 body: SizeTransition(
 sizeFactor: _animation,
 axis: Axis.horizontal,
 axisAlignment: -1,
 child: const Center(
 child: FlutterLogo(size: 500.0),
),),);
 } }

Output

Mobile Programming Practical (MU- B.Sc-IT- Sem 3) (Lab Practical)…Page no (L-66)

(New Syllabus w.e.f academic year 23-24) (BI-06) Tech-Neo Publications

2. Slide transition

Code : main.dart:
import 'package:flutter/material.dart';
 /// Flutter code sample for [SlideTransition].
 void main() => runApp(const SlideTransitionExampleApp());
 class SlideTransitionExampleApp extends StatelessWidget {
 const SlideTransitionExampleApp({super.key});
 @override
 Widget build(BuildContext context) {
 return MaterialApp(
 home: Scaffold(
 appBar: AppBar(title: const Text('SlideTransition Sample')),
 body: const Center(
 child: SlideTransitionExample(),
),
),
);
 }
 }
 class SlideTransitionExample extends StatefulWidget {
 const SlideTransitionExample({super.key});
 @override
 State<SlideTransitionExample> createState() =>
_SlideTransitionExampleState();
 }
 class _SlideTransitionExampleState extends State<SlideTransitionExample>
 with SingleTickerProviderStateMixin {
 late final AnimationController _controller = AnimationController(
 duration: const Duration(seconds: 2),
 vsync: this,
)..repeat(reverse: true);
 late final Animation<Offset> _offsetAnimation = Tween<Offset>(
 begin: Offset.zero,
 end: const Offset(1.5, 0.0),
).animate(CurvedAnimation(
 parent: _controller,
 curve: Curves.elasticIn,
));
 @override

Mobile Programming Practical (MU- B.Sc-IT- Sem 3) (Lab Practical)…Page no (L-67)

(New Syllabus w.e.f academic year 23-24) (BI-06) Tech-Neo Publications

 void dispose() {
 _controller.dispose();
 super.dispose();
 }
 @override
 Widget build(BuildContext context) {
 return SlideTransition(
 position: _offsetAnimation,
 child: const Padding(
 padding: EdgeInsets.all(8.0),
 child: FlutterLogo(size: 150.0),
),
);
 }
 }

Output

Mobile Programming Practical (MU- B.Sc-IT- Sem 3) (Lab Practical)…Page no (L-68)

(New Syllabus w.e.f academic year 23-24) (BI-06) Tech-Neo Publications

 Practical 8 : Aim : Designing the mobile app to implement the state
management.

 State management

 One of the most crucial and essential processes in the life cycle of an application
is managing state.

 So, to put it simply, when a user opens an application, they see one state, and
when they click a button, they view another UI screen. The screen is now a state.
Consequently, an application is made up of several states, or UI. Navigation and
Route are in charge of respective states.

 Everything in memory at the time a program is running constitutes its state.
These contain all of the data, including graphics, UI information, animation
state, and asset information. Most user states are managed by the framework.
Ephemeral state and app state are two different categories of the state that we
control ourselves.

 Based on how long a given state persists in an application, state management can
be split into two groups.
o Ephemeral −a single page, like the current rating of a product, or a few

seconds like the condition of an animation at the moment.StatefulWidget in
Flutter provides support for it.

o app state −The App state or Shared state refers to states that the user desires
to share across numerous application components.

Example

1. Code: main.dart

import 'package:flutter/material.dart';
 import 'mainscreen.dart';
 void main() {
 runApp(MyApp());
 }
 class MyApp extends StatelessWidget {
 // This widget is the root of your application.
 @override
 Widget build(BuildContext context) {
 return MaterialApp(
 title: 'Flutter Demo',
 theme: ThemeData(
 primarySwatch: Colors.green,
),
 home: MainScreen(),
);
 } }

Mobile Programming Practical (MU- B.Sc-IT- Sem 3) (Lab Practical)…Page no (L-69)

(New Syllabus w.e.f academic year 23-24) (BI-06) Tech-Neo Publications

 Here we have created a StatlessWidget because we didn’t want to make a

dynamic application. If you want to make a dynamic application, then use

StatefullWidget.

 We have added the theme, which makes the primary color of the application

blue. The blue color is the default color of flutter, but we will give a green color

here. And we have set the home as MainScreen(). This means that the 1st screen

that will be visible to the user will open the UI of the MAIN SCREEN.

 To create MainScreen and SecondScreen right click on -> lib folder then click

on -> new -> dart file -> then set name as MainScreen -> then press

Enter.(follow the same process to create SecondScreen file.) after creation of

this two files user will get following structure.

2. Code : MainScreen.dart

import 'package:flutter/material.dart';
import 'secondscreen.dart';
class MainScreen extends StatelessWidget {
 @override
 Widget build(BuildContext context) {
 return Scaffold(
 appBar: AppBar(
 title: Text("State_Management Example SCREEN 1"),
),
 body: Center(
 child: ElevatedButton(
 child: Text('SCREEN 2'),
 onPressed: (){
 Navigator.push(context,
 MaterialPageRoute(builder: (context)=>SecondScreen())); },
),),);
 }
}

Mobile Programming Practical (MU- B.Sc-IT- Sem 3) (Lab Practical)…Page no (L-70)

(New Syllabus w.e.f academic year 23-24) (BI-06) Tech-Neo Publications

 This code created the 1st screen of our application whose title we have given as
State_Management Example SCREEN 1. And in the middle, we had added a
ElevatedButton which when clicked will take us to SCREEN 2.

 The line ” MaterialPageRoute(builder: (context)=>SecondScreen())” is mainline
that tells our app to move to screen 2 when the button is pressed. Now create a
new dart file named Secondscreen.dart . Creating this file will help us to import
this in the mainscreen.dart.

3. Code:SecondScreen.dart

import 'package:flutter/material.dart';
class SecondScreen extends StatelessWidget {
 @override
 Widget build(BuildContext context) {
 return Scaffold(
 appBar: AppBar(
 title: Text("State_Management Example SCREEN 2"),
),);
 }}
 In this file, we only have added the title bar that tells you that now you are on

the second screen. The flutter itself adds the back icon button. No need to code
that. Run this application and press the button in the Centre. It will take you to
screen 2.

Output

Mobile Programming Practical (MU- B.Sc-IT- Sem 3) (Lab Practical)…Page no (L-71)

(New Syllabus w.e.f academic year 23-24) (BI-06) Tech-Neo Publications

 Practical 9 : Aim : Designing the mobile app working with SQLite
database.

In this practical we will learn how to use SQLite in Flutter to create, read, update
and delete data operations. Here we can perform database operations on ListView
With this sqflite we would be able to store data in the mobile local storage.

 Step 1 : Create home_page.dart and contact.dart file under lib folder.

 Right click on -> lib folder then click on -> new -> dart file -> then set name as
home_page -> then press Enter.(follow the same process to create a contact file.)
after creation of these two files, the user will get the following structure.

 Step 2 : Type command on cmd -> flutter pub add sqflite

 Step 3 : Write below code in home_page.dart file.

Code : home_page.dart

import 'package:database_pract/contact.dart';
 import 'package:flutter/material.dart';
 class HomePage extends StatefulWidget {
 const HomePage({Key? key}) : super(key: key);
 @override
 State<HomePage> createState() => _HomePageState();

Mobile Programming Practical (MU- B.Sc-IT- Sem 3) (Lab Practical)…Page no (L-72)

(New Syllabus w.e.f academic year 23-24) (BI-06) Tech-Neo Publications

 }
 class _HomePageState extends State<HomePage> {
 TextEditingController nameController = TextEditingController();
 TextEditingController contactController = TextEditingController();
 List<Contact> contacts = List.empty(growable: true);
 int selectedIndex = -1;
 @override
 Widget build(BuildContext context) {
 return Scaffold(
 appBar: AppBar(
 centerTitle: true,
 title: const Text('Contacts List'),
),
 body: Padding(
 padding: const EdgeInsets.all(8.0),
 child: Column(
 children: [
 const SizedBox(height: 10),
 TextField(
 controller: nameController,
 decoration: const InputDecoration(
 hintText: 'Contact Name',
 border: OutlineInputBorder(
 borderRadius: BorderRadius.all(
 Radius.circular(10),
))),
),
 const SizedBox(height: 10),
 TextField(
 controller: contactController,
 keyboardType: TextInputType.number,
 maxLength: 10,
 decoration: const InputDecoration(
 hintText: 'Contact Number',
 border: OutlineInputBorder(
 borderRadius: BorderRadius.all(
 Radius.circular(10),
))),

Mobile Programming Practical (MU- B.Sc-IT- Sem 3) (Lab Practical)…Page no (L-73)

(New Syllabus w.e.f academic year 23-24) (BI-06) Tech-Neo Publications

),
 const SizedBox(height: 10),
 Row(
 mainAxisAlignment: MainAxisAlignment.spaceEvenly,
 children: [
 ElevatedButton(
 onPressed: () {
 //
 String name = nameController.text.trim();
 String contact = contactController.text.trim();
 if (name.isNotEmpty && contact.isNotEmpty) {
 setState(() {
 nameController.text = '';
 contactController.text = '';
 contacts.add(Contact(name: name, contact: contact));
 });
 }
 //
 },
 child: const Text('Save')),
 ElevatedButton(
 onPressed: () {
 //
 String name = nameController.text.trim();
 String contact = contactController.text.trim();
 if (name.isNotEmpty && contact.isNotEmpty) {
 setState(() {
 nameController.text = '';
 contactController.text = '';
 contacts[selectedIndex].name = name;
 contacts[selectedIndex].contact = contact;
 selectedIndex = -1;
 });
 }
 //
 },
 child: const Text('Update')),
],

Mobile Programming Practical (MU- B.Sc-IT- Sem 3) (Lab Practical)…Page no (L-74)

(New Syllabus w.e.f academic year 23-24) (BI-06) Tech-Neo Publications

),
 const SizedBox(height: 10),
 contacts.isEmpty
 ? const Text(
 'No Contact yet..',
 style: TextStyle(fontSize: 22),
)
 : Expanded(
 child: ListView.builder(
 itemCount: contacts.length,
 itemBuilder: (context, index) => getRow(index),
),
)
],
),
),
);
 }
 Widget getRow(int index) {
 return Card(
 child: ListTile(
 leading: CircleAvatar(
 backgroundColor:
 index % 2 == 0 ? Colors.deepPurpleAccent : Colors.purple,
 foregroundColor: Colors.white,
 child: Text(
 contacts[index].name[0],
 style: const TextStyle(fontWeight: FontWeight.bold),
),
),
 title: Column(
 crossAxisAlignment: CrossAxisAlignment.start,
 children: [
 Text(
 contacts[index].name,
 style: const TextStyle(fontWeight: FontWeight.bold),
),
 Text(contacts[index].contact),

Mobile Programming Practical (MU- B.Sc-IT- Sem 3) (Lab Practical)…Page no (L-75)

(New Syllabus w.e.f academic year 23-24) (BI-06) Tech-Neo Publications

],
),
 trailing: SizedBox(
 width: 70,
 child: Row(
 children: [
 InkWell(
 onTap: () {
 //
 nameController.text = contacts[index].name;
 contactController.text = contacts[index].contact;
 setState(() {
 selectedIndex = index;
 });
 //
 },
 child: const Icon(Icons.edit)),
 InkWell(
 onTap: (() {
 //
 setState(() {
 contacts.removeAt(index);
 });
 //
 }),
 child: const Icon(Icons.delete)),
],
),),
),);
 } }
 Step 4 : Write below code in contact.dart file

Code : contact.dart

class Contact {
 String name;
 String contact;
 Contact({required this.name, required this.contact});
}

Mobile Programming Practical (MU- B.Sc-IT- Sem 3) (Lab Practical)…Page no (L-76)

(New Syllabus w.e.f academic year 23-24) (BI-06) Tech-Neo Publications

 Step 5 : Write below code in main.dart file.

Code : main.dart

import 'package:database_pract/home_page.dart';
import 'package:flutter/material.dart';
void main() {
 runApp(const MyApp()); }
class MyApp extends StatelessWidget {
 const MyApp({Key? key}) : super(key: key);
 @override
 Widget build(BuildContext context) {
 return MaterialApp(
 title: 'Contacts List',
 debugShowCheckedModeBanner: false,
 theme: ThemeData(
 primarySwatch: Colors.purple,
),
 home: const HomePage(),);
 } }

Output

Mobile Programming Practical (MU- B.Sc-IT- Sem 3) (Lab Practical)…Page no (L-77)

(New Syllabus w.e.f academic year 23-24) (BI-06) Tech-Neo Publications

Mobile Programming Practical (MU- B.Sc-IT- Sem 3) (Lab Practical)…Page no (L-78)

(New Syllabus w.e.f academic year 23-24) (BI-06) Tech-Neo Publications

 Practical 10 : Aim : Designing the mobile app working with Firebase.

 Firebase

 Google's Firebase is a tool that makes it simple for developers to create,

maintain, and expand their apps.

 It makes it easier for developers to create apps more quickly and securely.

 Because there is no programming required on the firebase side, it is simple to

use the features more effectively. It offers services to web, unity, android, and

ios.

 It offers cloud storage. The database used for data storage is a NoSQL one.

Mobile Programming Practical (MU- B.Sc-IT- Sem 3) (Lab Practical)…Page no (L-79)

(New Syllabus w.e.f academic year 23-24) (BI-06) Tech-Neo Publications

 Step by Step Implementation

 Step 1 : First, you have to visit the Firebase console. Now let’s move to the next
step. Click on the “Add project” as shown in the below image.

Google sign-In is required to get started.

Mobile Programming Practical (MU- B.Sc-IT- Sem 3) (Lab Practical)…Page no (L-80)

(New Syllabus w.e.f academic year 23-24) (BI-06) Tech-Neo Publications

Click on Add project.

Assign the name for your project and click on continue.

Mobile Programming Practical (MU- B.Sc-IT- Sem 3) (Lab Practical)…Page no (L-81)

(New Syllabus w.e.f academic year 23-24) (BI-06) Tech-Neo Publications

Disable the highlighted option as shown in above screenshot and click on Create
project.

Click on Continue.

 Step 2 : Now there will be a screen, You can find the Flutter button and click on
it as shown in the below image.

Mobile Programming Practical (MU- B.Sc-IT- Sem 3) (Lab Practical)…Page no (L-82)

(New Syllabus w.e.f academic year 23-24) (BI-06) Tech-Neo Publications

Now time to add firebase to your Flutter App.

Now click on Firebase CLI then you will redirect to the following page select
windows and download Firebase CLI for windows.

Mobile Programming Practical (MU- B.Sc-IT- Sem 3) (Lab Practical)…Page no (L-83)

(New Syllabus w.e.f academic year 23-24) (BI-06) Tech-Neo Publications

 Step 3 : Now go to downloads and click on downloaded Firebase CLI library

On firebase CLI you will get a message: Allow firebase to collect CLI usage and

error reporting information? (Y/N)

Then type Y and press enter.

Then windows security alert box will come, click on allow access and at the

same time firebase CLI login is required to provide it, after login you will get the

following message.

Mobile Programming Practical (MU- B.Sc-IT- Sem 3) (Lab Practical)…Page no (L-84)

(New Syllabus w.e.f academic year 23-24) (BI-06) Tech-Neo Publications

 Step 4 : Then install nodejs software and add the following highlighted path to
the path variable in the environment variable.

Click on OK
Open cmd and type command: npm install –g firebase-tools

Mobile Programming Practical (MU- B.Sc-IT- Sem 3) (Lab Practical)…Page no (L-85)

(New Syllabus w.e.f academic year 23-24) (BI-06) Tech-Neo Publications

 Step 5 : Again open cmd and type: dart pub global activate flutterfire_cli

Now add below highlighted path to path variable in environment variable as
shown below.

Open cmd and again type: dart pub global activate flutterfire_cli

Mobile Programming Practical (MU- B.Sc-IT- Sem 3) (Lab Practical)…Page no (L-86)

(New Syllabus w.e.f academic year 23-24) (BI-06) Tech-Neo Publications

 Step 6 : Now register your platform app with firebase

Now copy the above highlighted command of your project and run on cmd as

shown below.

Select android press enter.

Mobile Programming Practical (MU- B.Sc-IT- Sem 3) (Lab Practical)…Page no (L-87)

(New Syllabus w.e.f academic year 23-24) (BI-06) Tech-Neo Publications

 Step 7 : Now copy below highlighted code and paste in main.dart file in android

studio.

Mobile Programming Practical (MU- B.Sc-IT- Sem 3) (Lab Practical)…Page no (L-88)

(New Syllabus w.e.f academic year 23-24) (BI-06) Tech-Neo Publications

Open pubspec.yaml and add firebase_core: ^1.0.2 as shown below and click on

pub get.

 Step 8 : In terminal section of android studio Type following commands:

1. flutter pub add firebase_core

2. flutterfire configure

 Run your flutter project at the end.

Now in firebase console click on continue to the console as shown below:

Mobile Programming Practical (MU- B.Sc-IT- Sem 3) (Lab Practical)…Page no (L-89)

(New Syllabus w.e.f academic year 23-24) (BI-06) Tech-Neo Publications

Then refresh this page you will see here iOs Platform has been added to your

project.

Mobile Programming Practical (MU- B.Sc-IT- Sem 3) (Lab Practical)…Page no (L-90)

(New Syllabus w.e.f academic year 23-24) (BI-06) Tech-Neo Publications

 Practical 11 : Aim : Designing the mobile app to develop a calculator.

In this Practical we will build a Simple Calculator App that can perform basic
arithmetic operations like addition, subtraction, multiplication or division depending
upon the user input.

 Step 1 : Adding dependencies in pubspec.yaml file

Add math_expressions: ^2.0.0 package in pubspec.yaml file as shown in below
screen.

 Step 2 : After adding this package click on Pub get.

If everything is OK you will get following message in terminal:

Mobile Programming Practical (MU- B.Sc-IT- Sem 3) (Lab Practical)…Page no (L-91)

(New Syllabus w.e.f academic year 23-24) (BI-06) Tech-Neo Publications

 Step 3 : In the Lib folder, there is a main.dart file already present. And now in
the same folder create a new file named buttons.dart and write below
code inside it.

Code: buttons.dart

import 'package:flutter/material.dart';

// creating Stateless Widget for buttons
class MyButton extends StatelessWidget {

 // declaring variables
 final color;
 final textColor;
 final String buttonText;
 final buttontapped;

 //Constructor
 MyButton({this.color, this.textColor, required this.buttonText,
this.buttontapped});

 @override
 Widget build(BuildContext context) {
 return GestureDetector(
 onTap: buttontapped,

Mobile Programming Practical (MU- B.Sc-IT- Sem 3) (Lab Practical)…Page no (L-92)

(New Syllabus w.e.f academic year 23-24) (BI-06) Tech-Neo Publications

 child: Padding(
 padding: const EdgeInsets.all(0.2),
 child: ClipRRect(
 // borderRadius: BorderRadius.circular(25),
 child: Container(
 color: color,
 child: Center(
 child: Text(
 buttonText,
 style: TextStyle(
 color: textColor,
 fontSize: 25,
 fontWeight: FontWeight.bold,
),
),
),
),
),
),
);
 }
}
 Step 4 : Write below code in main.dart file.

Code: main.dart

import 'package:flutter/material.dart';
import 'buttons.dart';
import 'package:math_expressions/math_expressions.dart';

void main() {
 runApp(MyApp());
}

class MyApp extends StatelessWidget {
 @override
 Widget build(BuildContext context) {
 return MaterialApp(
 debugShowCheckedModeBanner: false,
 home: HomePage(),
); // MaterialApp

Mobile Programming Practical (MU- B.Sc-IT- Sem 3) (Lab Practical)…Page no (L-93)

(New Syllabus w.e.f academic year 23-24) (BI-06) Tech-Neo Publications

 }
}

class HomePage extends StatefulWidget {
 @override
 _HomePageState createState() => _HomePageState();
}

class _HomePageState extends State<HomePage> {
 var userInput = '';
 var answer = '';

 // Array of button
 final List<String> buttons = [
 'C',
 '+/-',
 '%',
 'DEL',
 '7',
 '8',
 '9',
 '/',
 '4',
 '5',
 '6',
 'x',
 '1',
 '2',
 '3',
 '-',
 '0',
 '.',
 '=',
 '+',
];

 @override
 Widget build(BuildContext context) {
 return Scaffold(
 appBar: new AppBar(

Mobile Programming Practical (MU- B.Sc-IT- Sem 3) (Lab Practical)…Page no (L-94)

(New Syllabus w.e.f academic year 23-24) (BI-06) Tech-Neo Publications

 title: new Text("Calculator"),
), //AppBar
 backgroundColor: Colors.white38,
 body: Column(
 children: <Widget>[
 Expanded(
 child: Container(
 child: Column(
 mainAxisAlignment: MainAxisAlignment.spaceEvenly,
 children: <Widget>[
 Container(
 padding: EdgeInsets.all(20),
 alignment: Alignment.centerRight,
 child: Text(
 userInput,
 style: TextStyle(fontSize: 18, color: Colors.white),
),
),
 Container(
 padding: EdgeInsets.all(15),
 alignment: Alignment.centerRight,
 child: Text(
 answer,
 style: TextStyle(
 fontSize: 30,
 color: Colors.white,
 fontWeight: FontWeight.bold),
),
)
]),
),
),
 Expanded(
 flex: 3,
 child: Container(
 child: GridView.builder(
 itemCount: buttons.length,
 gridDelegate: SliverGridDelegateWithFixedCrossAxisCount(
 crossAxisCount: 4),
 itemBuilder: (BuildContext context, int index) {

Mobile Programming Practical (MU- B.Sc-IT- Sem 3) (Lab Practical)…Page no (L-95)

(New Syllabus w.e.f academic year 23-24) (BI-06) Tech-Neo Publications

 // Clear Button
 if (index == 0) {
 return MyButton(
 buttontapped: () {
 setState(() {
 userInput = '';
 answer = '0';
 });
 },
 buttonText: buttons[index],
 color: Colors.blue[50],
 textColor: Colors.black,
);
 }

 // +/- button
 else if (index == 1) {
 return MyButton(
 buttonText: buttons[index],
 color: Colors.blue[50],
 textColor: Colors.black,
);
 }
 // % Button
 else if (index == 2) {
 return MyButton(
 buttontapped: () {
 setState(() {
 userInput += buttons[index];
 });
 },
 buttonText: buttons[index],
 color: Colors.blue[50],
 textColor: Colors.black,
);
 }
 // Delete Button
 else if (index == 3) {
 return MyButton(
 buttontapped: () {

Mobile Programming Practical (MU- B.Sc-IT- Sem 3) (Lab Practical)…Page no (L-96)

(New Syllabus w.e.f academic year 23-24) (BI-06) Tech-Neo Publications

 setState(() {
 userInput =
 userInput.substring(0, userInput.length - 1);
 });
 },
 buttonText: buttons[index],
 color: Colors.blue[50],
 textColor: Colors.black,
);
 }
 // Equal_to Button
 else if (index == 18) {
 return MyButton(
 buttontapped: () {
 setState(() {
 equalPressed();
 });
 },
 buttonText: buttons[index],
 color: Colors.orange[700],
 textColor: Colors.white,
); }
 // other buttons
 else {
 return MyButton(
 buttontapped: () {
 setState(() {
 userInput += buttons[index];
 });
 },
 buttonText: buttons[index],
 color: isOperator(buttons[index])
 ? Colors.blueAccent
 : Colors.white,
 textColor: isOperator(buttons[index])
 ? Colors.white
 : Colors.black,
);
 }
 }), // GridView.builder

Mobile Programming Practical (MU- B.Sc-IT- Sem 3) (Lab Practical)…Page no (L-97)

(New Syllabus w.e.f academic year 23-24) (BI-06) Tech-Neo Publications

),),
],
),
); }
 bool isOperator(String x) {
 if (x == '/' || x == 'x' || x == '-' || x == '+' || x == '=') {
 return true; }
 return false;
 }
// function to calculate the input operation
 void equalPressed() {
 String finaluserinput = userInput;
 finaluserinput = userInput.replaceAll('x', '*');
 Parser p = Parser();
 Expression exp = p.parse(finaluserinput);
 ContextModel cm = ContextModel();
 double eval = exp.evaluate(EvaluationType.REAL, cm);
 answer = eval.toString();
 }}

Output

Lab Manual Ends...

